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The analyticity on a strip of the solutions of Navier-Stokes equations in 2D is 
shown to explain the observed fast decay of the frequency power spectrum of 
the turbulent velocity field. Some subtleties in the application of the Wiener- 
Khinchine method to turbulence are resolved by showing that the frequency 
power spectrum of turbulent velocities is in fact a measure exponentially 
decaying for frequency ~ _+co. Our approach also shows that the conventional 
procedures used in analyzing data in turbulence experiments are valid even in 
the absence of the ergodic property in the flow. 
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1. I N T R O D U C T I O N  

The empirical basis for many  theories of fluid turbulence is the observed 
power spectrum characterizing the flow. In fact the spectrum as such is not  
measured directly. Rather, the behavior of the velocity at a point  is 
observed as a function of time, and the Taylor hypothesis is used to relate 
the time sequence to the behavior of the velocity in space. A useful 
measurement is the two-time correlation of the turbulent  velocity at a 
point in space. The Fourier  transform of that correlation then yields the 
frequency spectrum of the velocity, say P(o~), at a given point  in the 
turbulent  flow. In  the course of those measurements it was observed that 
P(co) drops off very rapidly at high frequencies. (l~) How fast is still a matter  
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of debate, tl~ We show that P(w) decays at least as fast as e x p ( -  Iogl/IOgdl). 
Because such measurements are among the few quantities which can be 
obtained from experiments, it is all the more important to ensure that the 
operations on the data make mathematical sense, and therefore it is useful 
to establish the ensuing theoretical considerations on a sound mathemati- 
cal basis. Here we show that this behavior can be related to the time 
analyticity on a strip with finite width of the solutions of 2D Navier-Stokes 
equations. 

As a step to showing the connection between the analyticity property 
and the high-frequency behavior of the power spectrum, it is necessary to 
characterize precisely the mathematical objects we deal with, namely the 
time-correlation function and its Fourier transform. Although on the 
surface it would appear that the well-known apparatus of the Wiener- 
Khintchine theory (6~ connecting the time behavior of the correlation 
function and the frequency power spectrum suffices, there are some subtle 
points not previously discussed in this context. Their clarification leads to 
a useful result which shows that the standard operations may be valid even 
in the absence of ergodicity of the flow. Also our approach shows that 
the conventional Wiener-Khintchine method used in turbulent velocity 
analysis is justified, provided one works in an adequately constructed 
mathematical framework. 

We note that the mathematical apparatus used here is more or 
less well known, but we believe that its application here is new and 
illuminating. 

In addition to the important mathematical consequences of the 
analyticity property, analyticity can also be interpreted physically. Indeed, 
the analyticity property is equivalent to the fact that at no time does the 
momentum in the turbulent flow become infinite. The experimental 
evidence suggests that this property also holds for 3D flows. If this were 
true, then our rigorous approach would also be valid for 3D flows. 

Section 2 introduces our notation and some of the needed properties 
of the Navier-Stokes equations in two dimensions. In Section 3 and 
subsequently in Section 5 we show how the pointwise spectrum at high 
frequencies depends on the width of the analyticity strip in the complex 
time domain. We also show that the pointwise properties of the power 
spectrum P(co) include the possibility that this spectrum may not be an 
ordinary function, but a distribution. That possibility raises many practical 
difficulties, and to mitigate them, in Section 4 we examine the power 
spectrum as an object with well-understood statistical properties, and in 
particular as based on a process with an invariant probability measure. As 
a result it follows that P(~o) as a distribution is a measure. Section 5 
addresses the existence of an invariant measure such that the necessary 
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time averages exist at least in the sense of the Banach limit, eventually 
ensuring the existence and meaningfulness of the power spectrum as a 
Fourier transform of the two-time correlation function. Some comments 
about the corresponding situation in three-dimensional turbulence are 
contained in Section 6, and conclusions are summarized in Section 7. 

2. PRELIMINARIES ON THE NAVIER-STOKES EQUATION 

2.1. We consider the 2D Navier-Stokes equations with either 
periodic boundary conditions or no-slip boundary conditions. To be 
precise we consider ~ Q = [ 0 ,  L']  2 in the first case and t2 a connected 
bounded domain with a C2-boundary in the second case. We set 

g={u= ~ ake(2ni/L)k'":: 
k ~ Z  2 

R 2, a k = 0 for k.  k large enough, ao = 0, V. u = 0 t ak 

in the periodic case and 

v =  {.6 G~ v.  u=o} 

in the no-slip case. We denote by H, respectively V, the closure of V in 
L2(I2) 2, respectively in H](I2) 2. [We recall that Ht(12), l =  1, 2 ..... is the 
space of all cp e L2(t2) such that their derivatives (as distributions) are in 
L2(I2) up to order L] In H and V we consider the scalar products 

Ou av  lu, l)=fo  lx).  x)dx i=1 
respectively. The corresponding norms are denoted by 

lu l=(u,u)  ~/2 (u~H), 11011=((0,0)) I/2 (oEV) 

The orthogonal projection of L2(I2) 2 onto H will be denoted by P. The 
phase space of the 2D Navier-Stokes equations with the boundary condi- 
tion considered above is H. To obtain the dynamical system of the 2D 
Navier-Stokes eotuations in H, one applies (following Leray tT)) the projec- 
tion P to the linear momentum equations of the Navier-Stokes equations, 
obtaining the differential equation 

du 
~ +  vAu + B(u, u) = f (2.1.1) 
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in H. The operators A and B are defined by 

A = - P A  (2.1.2) 

on Vc~ H2(f2) 2, where A = V 2 is the Laplace operator, and 

B ( u , v ) = P [ ( u . V ) v ] ,  u, v E ~ ( A ) = V n H ~ ( 1 2 )  z (2.1.3) 

The right-hand side f represents the divergence-free component of the body 
forces, which for convenience will be assumed in H. Of course, v is the 
kinematic viscosity of the fluid. 

We recall that solutions of (2.1.1) are known to exist for all time t >/0. 
That is, for every initial datum Uo ~ H there exists a unique continuous 
function u: [0, oo) ~ H such that: 

(i) u(0)=Uo. 
(ii) (2.1.1) is satisfied for t > 0 ,  that is, u ( t ) e ~ ( A )  for t > 0  and du/dt 

exists in H for t > 0 and satisfies (2.1.1). 

In fact, if uoE V [or  Uoe~(A)] ,  then u(t) is continuous in V [resp. in 
~ (A) ]  on [0, oo); recall that the norm of V is I1" II and the norm of ~(A)  
is IA.I. The map uo~--*u(t) defined for all t>~0 and u o e H  is denoted by 
S(t). The dynamical system associated to the 2D Navier-Stokes equations 
with either one of the boundary conditions specified above is the nonlinear 
semigroup {S(t)} t~>o. 

2.2. One of the most important properties of {S(t)}t~o is dis- 
sipativity, that is, the existence of an absorbing compact set Ba in H for 
{S(t)},~> 0. This means that for every bounded set B in H there exists a 
time to = to(B) such that S(t) ~ c Ba for all t/> to. In fact, Ba can be chosen 
to be a closed ball in V, i.e., 

n a =  {u~ V: Ilull ~<rx} (2.2.1) 

The number r l must be chosen to be sufficiently large. In the periodic case 
the. inequality 

rl > Ifl/v)?~/= = ( G  I f l )  ~/= (2.2.2) 

will suffice, while in the no-slip case one must require 

rt > 2eC'6~(G I f l )  m (2.2.3) 

Here G is the dimensionless generalized Grashoff number, namely 

G= Ifl/v22~ (2.2.4) 
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and ct (as well as c:,  c 3 .... in the sequel) denotes an absolute (dimen- 
sionless) constant in general of the order of unity. It is still an open 
question whether the exponential in (2.2.3) is superfluous or not. 

We also note that the absorbing set Ba can be chosen to be a closed 
ball in ~(A);  in this case the estimates of its radius in terms of G are more 
complicated than (2.2.2)-(2.2.3). It will, however, be more convenient in 
the sequel to consider an absorbing set B, which is a closed ball in ~(A). 

2.3. The main feature of a dissipative dynamical system is its global 
attractor sd defined by 

�9 ~ =  N S(t)B,, (2.3.1) 
t>~0 

This set has the following properties: 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

2 . 4 .  

time analyticity of the solutions with initial data in ~ .  To be specific, let 
H c, V c, and ~(A)  c denote the complexifications of the spaces H, V, and 
~(A), respectively. Thus, for instance, H c =  {u] +iu2: u~, u2eH}. The 
operator A is extended to ~(A)  c by the formula A(u] + iu2)= Au~ + iAu2, 
u~, u2e~(A) .  Working with complexifications amounts to considering 
vector fields whose components are allowed to be complex-valued. 

The analyticity mentioned above is the following property. There exist 
rio, flo > 0, depending only on d [that is, only on Eq. (2.1.1)] such that for 

d is a nonempty compact subset of H. 

For any bounded set B in H and any e > 0  there exists 
to = to(e, B) such that 

S(t) B c  {ueH:  distil(u, a ' )  <e} 

for all t >/to. 

~r is the smallest set enjoying properties (i), (ii). 

S(t) s C = d  for all t~>0 [in other words, the solution u(t) of 
(2.1.1) satisfying u ( 0 ) = U o e d  exists for all real t and lies in 
sg]. 
~r is the set of all vectors Uo e H such that the solution u(t) of 
(2.1.1) satisfying u (0 )=u  0 exists for all real t and is bounded on 
the whole ( - o o ,  oo). 

d is compact even as a subset of ~(A). 

If the generalized Grashoff number G is less than a certain 
absolute constant c2, then M = {Uo}, where uo is a stationary 
solution of (2.1.1), i.e., vAuo+B(uo, uo)=f. 

Another useful property of the global attractor is the global 



584 Bercovici et  al.  

every Uoe~' ,  the function S(t)Uo extends from [0, ~ )  to a ~c(A)-valued 
analytic function U((, uo) on the whole band {(~C:  I~1 ~<6o} satisfying 
also 

IAU((,Uo)l<<.flo forall  ( ~ C ,  I.~(1<~o (2.4.1) 

Note that for ( =  t real, U(t, Uo) is precisely the solution u(t) of (2.1.1) on 
the whole real time line satisfying u(0)= Uo; in particular, 

U(t, uo) = S(t) uo for t ~> 0, u o ~ ~r (2.4.2) 

For later use let us note that we can extend the restriction of the (non- 
linear) semigroup {S(t)} ,>/o to d to a (nonlinear) group {S~r -oo <,< 
by defining 

~S(t) u o if t > 0  
S~'(t) u~  Uo) if t~<0 

(2.4.3) 

for Uo e ~ .  The quantities ~o and flo introduced above can be estimated 
explicitly. For instance, one can take 

~o = (v21) -1 caG-l ( l~  + G +  1) -1 (2.4.4) 

in the periodic case, and 

6o=(V21)e3e-Cl~(2G) - l  [log(2G + l )+  l +ciG4] -1 (2.4.5) 

is the no-slip case, where e3 is a new appropriate absolute constant. Also, 
flo can be taken equal to a moderate multiple of the radius of Ba in ~(A). 

All the statements above can be either found explicitly in ref. 2 or 
ref. 9, or can be easily proved by the techniques presented in those 
monographs. 

2.5. Remark. An important consequence of the existence of compact 
absorbing subsets of ~(A)  is the fact that for any solution u of (2.1.1), the 
functions (du/dt)(t, Xo), Xoeg2, are bounded for large t. In particular, 
u(t, xo) is uniformly continuous for large values of t. This fact will be used 
several times, particularly in Section 4.3 and Section 5. 

3. THE P O I N T W I S E  P O W E R  S P E C T R U M  

3.1. Let g(t) be a bounded, measurable, real-valued function 
depending on the real variable t ~ ( - ~ ,  ~ ) .  The power spectrum P(co) of 
g(t) is usually defined by 

P(co)= lim 1 [ ; :  dt 2 r -  o~ T e-i'~ (3,1.1) 
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provided that the limit exists. In order to increase the range of applicability 
of this concept, it is useful to view P(co) as a distribution in the sense of 
L. Schwartz. We refer to ref. 4 for the facts related to distribution theory. 
Recall that distributions are linear functionals on the space ~ ( R )  of all 
compactly supported, infinitely differentiable functions on the real line, 
continuous in a certain topology. The action of a distribution P on a test 
function cp E ~ ( R )  will be written as ~-~o~ P(co) cp(co) &o even when P is not 
a function. A distribution P is said to be a positive measure if there exists 
a positive Borel measure m on the line such that ~-~o~ P(co)cp(co)&o= 
~-o~ ~o(co) m(&o) for all test functions ~p. A version of the Kakutani-Riesz 
representation theorem implies that a distribution P is a positive measure 
if and only if ~E~o P(co) ~o(co) &o >/0 for every nonnegative test function ~0; 
(cf. ref. 4, Theorem 2.1.7). 

To see now how one might define the power spectrum as a distribu- 
tion, consider the finite-time power spectrum defined by 

1 T 2 

Pr(cO)=-~lfo e-i~ dt 

and the finite-time autocorrelation 
II ~ 

Cr( r )  = -~  g(t + r) g(t) dt for 

of g. Let (p be a test function, and let 

L 0(r)  = ei~~ ) do9 

be its Fourier transform. Observe that 

T 

- - o 0  I T  

for T >  0 (3.1.2) 

rE(--T, oo) 

l f ;g ( t l )d t ,  f r+'t g(t2)(b(t2--tl)dt2 
- - T + I  1 
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whence 

fT f_~  Pr(~ rP(~ d~ T CT(T) ~(TJ) d'c 

<~ l ( s u p  [g])2 I :  dt, ( frr+"+ f~r+,,)  loP(t2-tl)] dt2 

l ]g[)2 frrlt~(t)[ dt  (sup 

~< ~ ( sup  Igl) 2 It@(t)l dt 
- - o o  

for T ~  on (3.1.3) 

for r e ( - - o o ,  oo) (3.1.4) 

so that 

Now, for instance, if the autocorrelation of g 

lim Cr(r )  = C(r) 
T ~ o o  

exists almost everywhere, then (3.1.3) (combined with the dominated 
convergence theorem; cf. ref. 8, Theorem 1.34) shows that P(co)= 
limr.~oPr(cO) exists in ~ ' (R)  (i.e., as a distribution in the sense of 
L. Schwartz) and is precisely the Fourier transform (again in the sense of 
Schwartz) of C(T); cf. Section 7.1 in ref. 4. Indeed, one must only note that 
the finite-time autocorrelation functions are uniformly bounded by the 
upper bound of [gl. We summarize this discussion as follows. 

3.2. Proposition. Let g be a bounded, measurable, real-valued 
function on R, and assume that the autocorrelation C of g exists almost 
everywhere. Then the power spectrum P of g exists as a distribution, the 
Fourier transform of C is P, and in addition P is a positive measur& 

Proof. We only have to verify that J~P(og)rp(co)&o>~O if rp is a 
nonnegative test function. This, however, is immediate because Pr>~ 0 and 
j ~_ ~ P( co ) ~p( og ) dm= l imr~ oo J_~  P r( co ) ~o( o9 ) dco. 

As an example, consider the constant function g(t)~-go for which 
C(r) = go. We conclude that P is the Fourier transform of the constant 
function go 2, that is, P =  2~rgo26, where 6 is the Dirac "function." 

A version of Proposition 3.2 can be proved even when the autocorrela- 
tion of g does not exist. In order to do that, we fix a functional Lim which 
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extends the ordinary limit to the Banach space B(0, oo) of all bounded 
functions on (0, oo). More precisely, we want that I L i m r _  o~ f (  T)] ~< II f II o~ 
and L imr_  oo f ( T )  = l imr~ oo f ( T )  i f f~  B(0, oo) has a limit at infinity. The 
existence of such functionals is an easy consequence of the Hahn-Banach 
theorem; cf. ref. 3, Theorem 11.3.10. Any such functional Lim is positive, in 
the sense that the Lim of a nonnegative function is nonnegative. 

3.3. Proposition. Let g be a bounded function. For every test func- 
tion ~p the function T~-~ ~-o~ Pr(o)) q~(o)) do is bounded, and the formula 

F P(O)) ~o(o)) do) = Lim Pr(o))  ~o(o)) do) 

defines a distribution. The distribution P thus defined is a positive measure. 

Proof. Relation (3.1.3) implies the boundedness of T~--~_~ Pr(o)) 
~o(o)) do), as well as the fact that 

p co e T 

Lim dr 
T~o:) -] --oo T~co :--T 

Since the functions Cr are uniformly bounded, the existence of the distribu- 
tion P follows. It is easily seen that ~ P(o))q~(o))do) is nonnegative if 
~o~>0. 

Since the dominated convergence theorem does not apply to Lim, we 
cannot generally conclude that the distribution P defined in Proposition 3.2 
is the Fourier transform of the bounded function C( r )=  L im r_  ~ Cr(r). 
This, however, can be proved under additional assumptions on the 
function g. 

3.4. Proposition. Assume that the function g is bounded and 
uniformly continuous on ( -  co, co). Then the distribution P defined in 
Proposition 3.2 is the Fourier transform of the bounded function C( r )=  
L imr_  ~ Cr(r) .  

Proof. We must show that 

T co 

Lim f Cr(r)~(r)dr=f C(r)~(r)dr 
T ~ o ~  - -  T o o  

for every ~p ~ ( ~ ) .  We will prove that 

Lim Cr( r )  f ( r )  & = C(r) f(r) dr 
T~o~ --T - - ~  

for every f~L~(R). Now, the functions Cr( r )  are uniformly bounded, so 
that it suffices to prove the identity above for functions f with compact 
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support. Assume therefore that f~L~(R) is supported in the interval 
[ - T o ,  To]. For each r e  [ - - T  o, To] defme a function ~ B ( 0 ,  oo) by 

=~'0 if T < T o + I  ~( T) 
Cr(r) if T~>To+ 1 

Clearly we have 

Lim ~T(T)= Lim Cr(v) for r e  [ - -To ,  To] 
T ~ o o  Y ~ o o  

We claim that the map rw-~ ,  is continuous from [ - T o ,  To] to B(0, ~ ) .  
Indeed, if r, r '  e [ - To, To] and ]z - v'] ~< 1, 

[[~T-~r,[[ oo = sup [ ~ . ( T ) -  ~.,(T) t 
T~>0 

= sup  I ~ ( T ) - ~ , ( T ) I  
r>~ ro+1 

= sup J C r ( r ) - C r ( r ' ) l  
T>~ T 0 +  1 

~< sup [ g ( t + r ) - g ( t + r ' ) l .  Ig(t)l dt 
T~> TO+ I - ~  

~< Ifgll ~o sup Ig(t + r) - g(t + r')l 
t ~ 0  

and this tends to zero as I r - r ' l - - * 0  by the uniform continuity of g. It 
follows that the function f ( r ) ~  is an integrable B(0, oo)-valued function, 
and the identity to be proved can be rewritten as 

F Lim f ( r )  ~ dr = f ( r )  Lim ~T dr 

This identity simply follows from the continuity of the functional L imr~  ~. 

It is important to observe that the power spectrum and autocorrela- 
tion of a function g only depend on the values g(t) for large t. To be more 
precise, we formulate this as a separate result. 

3.5. Proposition. Let gj and g2 be two bounded measurable func- 
tions, and denote by P~r, P~, C~r, and C2r the corresponding finite-time 
power spectra and autocorrelations. If g~(t)= g2(t) for sufficiently large t, 
then: 

(1) Lira C l ( r ) =  Lira C~-(r) for all r 
T ~  ~:~ T ~  oc~ 
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fT fT (2) Lim C~r(r) c~(r) dz = Lim C2r(r) O(r) dr 
T~ao - - T  T ~ o ~  - - T  

for every q~ e ~ ( R )  

(3) Lira f ~  P~.(a~) q~(o~) d~o = Lira f ~  P2r(a~ ) q~(o~) d~o 
T ~ c c ,  O--oo T ~ o o  O--co 

for every cp ~ ~ ( R )  

Proof. Suppose that g~(t)= g2(t) for t > /T O > 0, and A is a positive 
number. For t >  T o + A  and Irl < A  we have gl(t) = g2(t) and g l ( t + z )  = 
g2( t+z) .  It follows that IC~r(r)-C~-(r)l<~2k2(To+A)/T,  r ~ [ - - A , A ] ,  
where k is a common bound for Ig~l and Ig21. The proposition follows 
immediately from this estimate. 

Using the preceding result, one can define the power spectrum and 
autocorrelation for any bounded function g defined on an interval of the 
form [ To, + ~ ) .  Indeed, one first chooses an arbitrary bounded extension 
of g to ~ and calculates the corresponding entities for this extension. If  g 
is uniformly continuous on [To, + ~ ) ,  the extension can be chosen 
uniformly continuous as well. We see in particular that the conclusion of 
Proposition 3.4 holds even if g is only assumed uniformly continuous on 
[To, +oo). 

3.6. We are interested in the behavior of P for large values of co. In 
view of the difficulties related to passing to the limit T ~  oo and the fact 
that P may be a distribution even when those difficulties can be overcome, 
we will first convolve P r  with a standard mollifier and then study the 
limit for T ~  ~ .  To be precise, let ~b be a fixed smooth function which 
is even, nonnegative, and zero outside the interval [-090,090],  and 
~_~ ~(co) dco = 1. We set 

l~b(c~ for c o e ( - ~ , o o ) ,  e > 0  (3.6.1) ~o(~o) = 

\ e /  

and convolve P r  with ~/,: 

Pr.,(co) = Pr(a)  0 --da = (Pr  * 0,)(co) (3.6.2) 

Clearly, l im,_ ~ Pr,, = Pr  uniformly, and if P exists as a distribution (e.g., 
the case considered in Section 3.1 above), we have l imr~  ~ Pr., = P * ~b,, 
which is a smooth function, even when P is a distribution; cf. Section 4.1 
in ref. 4. 
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The object we want to estimate is 

lim sup IPr.,(o))l 

for the case when g(t)= uj(t, xo) ( j =  1, 2), where u(t) = (ul(t, x), u,_(t, x)) 
(xef2) is a solution of (2.1.1) on the global attractor d ,  and Xo is any 
fixed point in t'2. 

3. '/.  Proposition. Let Pr(co) be the finite-time power spectrum of a 
component g(t)= u/(t, Xo) of the velocity field at a point x o e t2 of a solu- 
tion u(t) of (2.1.1) on the global attractor ~ .  Let, moreover, Pr., be the 
convolution defined in (3.6.2). Then 

l imsup IPr.,(co)l ~<c;~ ~'~ 4~o+ e -~0(1'~176176 e -/i~176176176 (3.7.1) 
T ~  o~ )~1 

for all c o s ( - o o ,  oo), t > 0 ;  in (3.7.1) 0c is a constant depending on the 
mollifier 0. 

This proposition provides a rigorous explanation of the fact that the 
power spectra of the velocity field at a fixed point in a 2D flow in an 
already permanent turbulent state are decaying exponentially for high 
frequencies. However, in a transient turbulent flow (i.e., when the solution 
is off the attractor d ) ,  the conditions that prevail may suffice neither for 
the existence of P nor for the estimate (3.6.1). 

3.8. Proof of the Proposition. According to the discussion in 
Section2, if u(t)es4 is a solution on the attractor, then u(t) can be 
extended in a band of the form {(EC:  13~1 ~<~o} to an analytic function 
U((, up) satisfying (2.4.1), where Up=U(0 ). Now, for any XoeS'-2 the map 
v~--, v(x o) is a linear continuous map from N(A) c into C satisfying also 

IIv(xo)ll c: ~< C4 Ivl ,/2 IAvl ]/2 ~< C4,~. 11/2 Iavl (3.8.1) 

(see Agmon's inequality in ref. 2 or ref. 9). It follows that ttj(t, Xo) has an 
analytic extension [the j t h  component of U((, Uo)(Xo) ] to the whole band 
{( e C: 13(I ~< ~0} which satisfies 

lu/(r xo)l ~< c4~? '/'- 1.4 u(r uo)l ~< c4~?'/'-flo 

Relation (3.7.1) is now a direct consequence of the following result. Recall 
that the mollifier 0(co) was supposed to be zero for Icol > COo. 

3.9. Lornma. Let g be a bounded analytic function in the strip 
{ ( e C :  13(l~<Jo} with real values on the real axis. Let Pr(og) be the 
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finite-time power spectrum of g and let P r , ~ = P r ,  ~ be defined as in 
(3.6.2). Then 

lim sup IPr,,(co)l 
T ~ o o  

sup Ig(() l )2(a6o+~e-a~176176176 -a~176176176 (3.9.1) 4 (  
I ~,:'I ~< ,5o \ / 

for all co ~ ( - 0 %  oo), e > 0, where 0c is a constant depending on ~b and 
satisfies 

F 0c>~e -~~176176 I~(r + 2i6o)1 dr (3.9.2) 

Proof. We will prove the lemma for positive values of co. The proof  
for co < 0 is entirely analogous and will therefore be omitted. Let 

T 

gr(co)=fo e-i'~ dt for c o e ( - o v ,  m),  T > 0  

and take co>/0. The Cauchy theorem (cf. ref. 8, Theorem 10.12) in the 
rectangle {x + iy: - 6  <~ y <~ 0, 0 ~< x ~< T}, with 0 < 6 ~< 60, implies that 

;~  - -  i6) g r( co ) -- e dt 

~<( sup [g( is)[)6+( sup Ig (T+i s ) l )6  

<<. 276 

with y =  SUPlar I <a Ig(()l ,  Thus we can write g T = h T + k T ,  where hr(co)= 
~re-i~ - i6) dt and Ikr(co)l ~< 2y6. Therefore 

1 ~ 1 291 l h T ( c o  ) - -  1 2 P r(co) = ~  Igr(co)l-=~ lhr(co)l = + k~(co) + ~  Ikr(co)l 

and hence 

1 476 @262 
Pr.~ ~< ~ Ihrl 2 * ~,  +- -~- Ihr l  * 4 / , + ~  1 �9 q/~ 

Since 1 �9 ~ ( c o ) =  1 for all co, and 

4y__~ (]hrl * ~)(co)  ~< 4726e -~ 
T 
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where 

o~ o: I~(e(t-2i6))l  dt 

Moreover ,  it is clear that 

I (~(r162 '~176162 for all r  

with an appropr ia te  constant  y~ depending only on @. This yields the 
estimate 

0~ ~ Y! e2gaa'og 
g 

Setting a = r t y l ,  6 = 6 o ,  we obtain (3.9.1) for co~>0. This concludes the 
p roof  of  the lemma and hence that  of  Proposi t ion 3.7. 

(3.9.5) 

592 

it follows that  

l imsupPr~(og)<~l imsupl  (lhrlZ *~,~)(oo)+@26e -~ (3.9.3) 
r ~  " r ~ ,  Z 

On the other hand, 

1 
~ ( I h d  2 * G)(oo) 

e -  " - r  do g ( t - i 6 ) g ( s - i 6 ) d s d t r  *~( . . . .  2ia) l 
- -co-  

1;ofo =-~ g( t - - i6)g(s - - i f i )e  -i~( . . . .  2ga~(e ( t_s_2 i6 ) )dsd  t 

Since [g(t - i6)[  <~ y and I g ( s -  i6)] <~ y, we obtain the estimate 

l ( I h , - I  * G)(a~) 

-- T e-2a~ [~(e(t--s--2i6))[ dsdt  

<~y2e-2a~' I~(e(t-2i6))l  dt<~y e f I~(e(t-2i6))l  dt 
o o  

From (3.9.3) we can now infer 

lim sup Pr.,(co) <~ y2(=,e-a~ + 46) e-a~ for all 09 t> 0 (3.9.4) 
T ~ a o  
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4. THE S T A T I S T I C A L  P O W E R  S P E C T R U M  

4.1. In Section 3.1 we discussed the difficulties arising from the 
definition (3.1.1) of the power spectrum. For the special case of interest, 
namely that considered in Section 3.7, there are two ways to overcome 
those difficulties. The first way is to refer directly to the statistics provided 
by an invariant probability measure with respect to {S(t)},>_.o and to 
invoke ergodic theory. We will first deal with this approach, while the 
second is treated in Section 5. 

Recall that an invariant probability measure l~ for the semigroup 
{S(t)},~o is a probability measure defined on the Borel subsets of H with 
the property that 

/ z ( S ( t ) - ~ ) = / ~ ( ~ )  forall  t>~0 and all Borel sets ~ c H  (4.1.1) 

Invariance is equivalent to the equality 

f ~(S( t )u ) t~ (du)=I~(U) l~(du)  for t~>0 (4.1.2) 

for all integrable real-valued Borel functions on H. Invariant measures for 
{ S(t)}, >/0 exist, and Proposition 5.3 below provides a construction of such 
measures. 

4.2. l_emma. Any invariant probability measure/1 is carried by the 
global attractor ~r that is, p ( H \ ~ ) =  O. 

Proof. First let B, be a closed ball in 9 (A)  which is absorbing for 
{S(t)},~> o (see the remark at the end of Section 2.2) and let B(r)= {uEH: 
lul ~< r} be some (closed) ball in H. There exists a time t >  0 such that 
B(r) c S(t) - l  B,. Thus 

l>>.p(B , )=I t (S ( t ) -~B , )>~lz (B(r ) )~p(H)=l  for r ---, ~ 

and therefore/~(B,) = 1. Let to be a time such that S(t) Bo ~ Bo for t >1 to. 
Then S(kt~) Bo D S((k + 1 ) t~) Ba for all k = 0, 1, 2 ..... and 

~r = N S(kta) B~ 
k = 0  

Therefore 

1 >~/~(d) = lim I~(S(kt,) Ba) = lim p(S(kto) -~ S(kto) B,) =kt(Ba) = 1 
k ~ o o  k ~ o o  

which concludes the proof. 
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4.3. By virtue of Lemma 4.2, in studying invariant probability 
measures we can restrict our considerations to d ,  and in particular work 
with Borel functions which are only defined on ~r In our further discus- 
sion we will systematically use the functions ~j.~o on ~(A)  c defined by 
3j.,:o(V)=Vj(Xo), v e ~ ( A )  c, Xo~l2, j - 1 , 2 .  These functions have already 
proved useful in Section 3.8. Since fijx0 is linear and continuous on ~ (A )c  
[see (3.8.1)], the function 

%,~o,~(u) = a,~o(S..(r) u) *jx0(u), u e ae (4.3.1) 

is continuous, and hence bounded on M. Moreover, these functions enjoy 
the following remarkable property: 

I%.x0..,(u)- %,..0,r=(u)l ~c~2;-,Rza-,~.o~o I t , - r2 l  (4.3.2) 

for all real r t, ~'2, all u e d ,  and all x o e g2. 

Proof o f  (4.3.2). We have 

I ~ez.~o.r,(u)- ~'..~0,du)l 

= I(S~r u)j (Xo) Uj(Xo) -- (S~(v2) u)j (~Co) uj(xo) I 

~< I U(rl, u) j (Xo)-  U(r2, u)j (xo)l" luj(xo)l 

<~ cZ42{ ~ IA U(*,, u ) -  AU(r2, u)l. IAul 

/ d \ 
~<c~. 7 '  Izl-z21 max A Z u . ,  u) ), . ,u, 

1 d u) ) 

where we used (3.8.1) in the second inequality and (2.4.1) in the last 
inequality. We use now the fact that the function U((, u) is a 9(A)c-valued 
analytic function on { ( e C :  I~1 .<ao}, in particular, on the disk { ( e C :  
I( - rl ~< 60} for every z e R. The Cauchy inequality for vector-valued func- 
tions applied in these disks, along with (2.4.1), implies 

. )  1 .<rio 
A d U(z, ~<6o I,:-~t-<~o "" 6o - -  max IAU((,v)I 

Relation (4.3.2) now follows immediately from this and the estimate 
obtained earlier. 
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4.4. Proposition. Let/z be an invariant probability measure and let 
XoeI2 and j =  1, 2 be fixed. Then for all /z-almost every u e~r the 
autocorrelation 

C(z) = lira 1 c / r (S~r + 3) u)j (Xo)(S~(t) u)j (Xo) dt 
r ~ o T 3 o  

(4.4.1) 

exists for all ~ R. Moreover, the power spectrum P(og) of the function 
g(t)=uj(t, xo)=(S~,(t)u)j(xo) exists as a distribution, and it is the 
Fourier transform of C(z) in the sense of L. Schwartz. The distribution 
P(og) is in fact a positive Borel measure. 

Proof. By virtue of (2.4.1) and (3.8.1) the function g is bounded. 
Thus, by Proposition 3.2, it suffices to prove the existence of the 
autocorrelation. Let Q denote the subset of all rational numbers in R. 
Birkhoff's ergodic theorem (see ref. 3, Theorem VIII.6.12) implies the 
existence for each r e O of a subset ~r ~ ~ of/z-measure zero such that 

C(~)= lim 1 [  r 
r~o~T3o 

l im- -  

uj( t + z, Xo) ui( t, Xo) dt 

~j,~o:(S(t) u) dt (4.4.2) 

exists for all u ~ ~r  Since Q is countable, the set g = (3, ~ Q d ,  also has 
a-measure zero, and for u e s / \ g  the limit C(r) as defined in (4.4.2) exists 
for all z e Q. We will show that for u ~ ~r  the limit C(v) exists for every 

�9 •. Indeed, let u e ~ r  and r �9 • be arbitrary. For e > 0 choose r,  e Q 
such that [z~-vt  ~<e. Then, by virtue of (4.3.2), we have 

~ P ,. , ~c421 /~o6o e -T ~'J ~o ~(S~,(t) u) d t - ~  ~'zxo:,(S~,(t) u) dt 2 -~ ~ - ,  

Since C(%) exists, we infer that 

llm sup -~ ~zxo:(S~(t) u) dt - l i m  inf 1 f r  
r -oo  r~oo TJo 

2 - -1  2 - -1  
~<c~; h ~o6o e 

~j, xo,,(S~(t) u) dt 

Since e > 0  is arbitrary, we conclude that C(r) exists, as claimed. This 
concludes the proof. 

822/80/3-4-7 
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4.5. Remark. 
for all r e R we have 

With the notation of Section 3.7, when (4.4.1) exists 

-6o(to~l- 2~coo) for co ~ tiC, e > 0 

(4.5.1) 

= I ( e  �9 O~)(co) l  

<~ 2 ? ' f12o ( 4~o + ~ e-6O(l'~ ~'~ ) e 

In the next section we give an integral version of this exponential decay 
property which is independent of e. 

5. GENERAL EXISTENCE T H E O R E M  

5.1. There are still some problems concerning the existence of the 
power spectrum of the velocity field at a point Xo in /2  which we have not 
yet addressed. First, how rich is the family of all invariant probability 
measures? Second, what happens if the velocity field is not on the global 
attractor? In this section we will give one answer to both of these problems, 
as well as the supplement to (4.5.1) promised in Section 4.5. 

5.2. In order to keep the notation as near as possible to that widely 
used in physics, and also to overcome the difficulty that in a rigorous 
mathematical study we cannot expect that all time averages of the form 

~, ~( S( t ) u) dt 

have limits for T--. ~ ,  we will work with an extension Lim of the ordinary 
limit, as in Proposition 3.3. 

5.3. Proposition. For every UoE~(A) there exists an invariant 
probability measure/ t  for {S(t)} ,30 such that 

f Lira -~ #(S(t) Uo) dt = #(u)lt(du) (5.3.1) 

for all continuous functions # on ~(A).  

Proof. We consider again an absorbing set B,  which is a closed ball 
in ~(A),  and a time t a such that S(t)BocBa for all t>>.t~. It is easy to 
check that the absorbing set X=S( t~)B,  is also compact in ~(A).  Let 
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C(X) denote the space of all real continuous functions on X [with respect 
to the norm of ~(A)] .  Let �9 be a continuous function on ~(A). Since 
S(t) uoeX for sufficiently large t, we conclude that the function 
t~--~ ~(S(t)uo) is bounded, and hence we can define 

G(~) = Lim 1 r i r ~ ( S ( t )  Uo)dt 
r - ~ T J o  

We claim that G(~) only depends on the restriction ~[X.  Indeed, if 
~01 X =  0, then ~(S(t))uo = 0 for large values of T, and clearly the limit of 
( l /T)  ~r~(s(t)uo)dt is zero, in particular, G ( ~ ) = 0 .  By Tietze's theorem 
(cf. Theorem 1.5.3 in ref. 3), any function ~ C(X) can be extended to a 
continuous function on ~(A). The previous argument allows us to define 
a functional F on C(X) by setting F( ~r0 = G(~), where �9 is an arbitrary 
continuous extension of ~ to ~(A). Clearly F is linear and positive in the 
sense that F(~ re) t>0 if ~ > 0 .  Thus by virtue of the Kakutani-Riesz 
representation theorem (cf. Theorem 2.14 in ref. 8) there exists a positive 
(Borel) measure/z on X (and hence on H) such that 

Since 

F(~g)=fx~(u)p(du) for ~ C(X) (5.3.2) 

,u(X)=F(1)= Lim 1=1  
T ~ o ~  

p is a probability measure. Clearly /~ satisfies (5.3.1) for all continuous 
functions �9 on ~(A). It remains to show that p is invariant. Indeed, if 
is continuous on ~(A)  and r > 0, we have 

#(s(r) u) ~(du) 

= Lim 1 fo'r r -  o~ -T crp( s( t + ~ ) Uo) dt 

1 [r§ r 
= Lirn -~j, ~(S(t) uo)dt 

= Lim 1 io r r -  ~ -T ~(S(t) Uo) dt 

~ '1[  r+" l ~  
+Lim Lr& ~<S<t+~).o)dt-~ �9 (S(t) Uo) dt} 
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= f ~(u) d~(u) 

+ :imoo ~-~ j r ~ ( S ( t + r ) u o ) d t - - ~  ~(S( t )uo)a t  

= f ~(u) a~(u) 

This concludes our proof. 

This proposition is an adaptation of a classical argument of Krylov 
and Bogoliubov (5) for the construction of invariant measures. As we will 
see below, the proposition is also a useful tool to replace the ad hoc 
assumption of ergodicity for the invariant probability measures. 

5.4. Proposition. Fix u 0 ~ ( A ) ,  x0~12, j =  1, 2, and set 

g( t )= f (S ( t )u ) j (Xo)  if t>~0 
(5.4.1) lo if t < 0  

(1) For every ~ r  the function TF-*~_ooPr(co)~(og)dco is 
bounded, and the formula 

f o~ P(co) ~b(a~) dco = Lim Pr(cO) ~b(co) dco (5.4.2) 
--oO T ~  --oo 

defines a distribution. The distribution P thus defined is a measure, i.e., 
~ ~-o~ P( co ) q~( co ) dco = ~ ~-oo q~( co ) m( dco ), where m is a positive Borel measure 
on R. 

(2) The distribution P is the Fourier transform in the sense of 
Schwartz of the bounded function C(r) = L imr~  oo Cr(r) .  

(3) The measure m satisfies the estimate 

f ~  (e~~176176176 m( dog ) <<.2c2271fl2 o (5.4.3) 

Proof. Parts (1) and (2) follow from Propositions 3.3-3.5 and the 
remarks following Proposition 3.5, because g(t) is indeed uniformly con- 
tinuous for large values of t. The function ~gj, xo: introduced in Section 4.3 
is continuous on ~(A). Therefore with the notation of Section 5.3 we have 
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lfo. C(r) = Lim ~J ~o ~( S(t) Uo) dt 
T ~  oo T ~ ' 

= I ~J':~ I.t(du) 

= f ajxo(S(r) u) ajxo(u) lz(du) 

= f 6jxo(S~c(r ) u) 6j, o(U) g(du) (5.4.4) 

for all z >/0. Noticing that 

f a, xo(S~(3) .) a, xo,(d.)= ~ a,~o(.)a, xo(S(-3)u),(du) 

and C(r)= C ( - r )  for r~<O, we obtain 

C(z) = ;~ 6jxo(S ~(r ) u) 6jxo(U ) i.t(du) (5.4.5) 

for 3 e •. Moreover, for u e d and % e • we have 

S ~ ( r ) u = U ( r , u ) =  ~ (r-3o)"a, (u ,  3o) for 13-3o1<6o 
r t = 0  

where by virtue of the vector version of the Cauchy inequalities we have 

[Aa,(u, to)l ~/~o/6g (n = 0, 1, 2,...) 

Therefore 

ajxo(S~(3 ) u) = ~. (3 - 3o) n 6jxo(an(u , to)) for 13 - rol < 60 
n = O  

where 

Thus 

16jxo( a,,( u, to))l ~< C4/~ 1 1 / 2 f 1 0 / 6 9  (n =0 ,  1, 2,...) 

C ( r ) =  ~ ( r -3o)"c% for I~-~ol<G 
n = O  



6OO 

where 

In particular, 

% = f 6Jxo(a,(u, to)) 6jxo(u) #( du) 

2 - - 1  2 n Im.l-~c4Xi Po/~o for n = 0 ,  1,2 .... 

Bercovici et  al.  

C(r) ~< n! 4 1  ~g for n = 0, 1, 2 .... (5.4.6) 

But 

- C " ( 0 )  = - lim 
r~,0 

The Fatou Lemma (cf. Lernma 1.28 in ref. 8) implies that 

Because of (5.4.7) we can write 

-- C" ( r ) = -~-~ f f oo e - "'r co2m( dco ) 

Repeating this argument, we find that 

ffooo)2nm(dco)<~(--1)"C'2")(O), n=O, 1,2 .... 

and therefore, for 6e  [0, 6o), we have [by (5.4.8) and (5.4.6)] 

I ~o~ cosh( Oco ) m( d~ ) 

= ~ 62, ~ ~ co 2" 
,=o -oo ~ m(dco) 

~2n 

C ( r ) -  2C(O)r 2 + C ( - r ) =  ,lim-. o ~o_~o \(sin(c~ ./ m(do) 

(5.4.7) 

(5.4.8) 
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But since C is even and analytic at 0 we have C(")(0) = 0 if n is odd and 
therefore 

f:oo cosh(&o)m(dco) 

<~ ~, (i~)2"f ~j~o(a.(u,O))~y~o(u)lz(du) 
n=O 

= f a+xo( U(ir u)) c~+xo(U ) ix(du) <~ C 2 / ~ l l f l  2 

Obviously we can now let ~ /" ~0- This concludes the proof of (3), and of 
the proposition. 

5.5. Remark. Note that the relation (5.4.4) is satisfied by the 
autocorrelation C(r) considered in Section 4. In particular, if Uo ~ sO\# (see 
Sections 4.4 and 4.5), then applying Proposition 4.4 to Uo, we obtain condi- 
tion (5.4.3), which supplements (4.5.1). Note that the invariant probability 
measure constructed in Section 5.3 and used in Section 5.4 in the proof of 
(5.4.3) may be different from the invariant probability measure considered 
a priori in Section 4.4, for which ~ is of zero probability. 

The results in this section show that by replacing the classical 
operation l imr~ oo with the operation L i m r o  co we can rigorously prove a 
set of results which were more or less intuitively or empirically known to 
physicists and engineers. 

6. A R E M A R K  ON THE T H R E E - D I M E N S I O N A L  CASE 

The difficulty in proving the results in Sections 3-5 for the 3D Navier- 
Stokes equations (with the same type of boundary conditions) lies in the 
fact that the existence of global (in time) regular solutions in this case is 
not yet known, and therefore the semigroup {S(t)}t>~o cannot be defined. 
However, at finite Reynolds numbers (which is always the case in our 
rigorous setting) the only way a solution can fail to be regular is if the 
velocity is infinite at some point in space and time. There is no experimen- 
tal evidence even remotely suggesting such a situation. Assuming bounded 
velocity fields (~n space and time), all the considerations made in the 
Sections 2-5 carry through to the three-dimensional case, with one caveat. 
Namely, we do not have any mathematical procedure for estimating the 
basic quantities rio (the half-width of the strip of analyticity for the 
solutions on the global attractor) and flo (the bound of those solutions on 
the strip). 
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7. CONCLUSIONS 

We have shown how the time analyticity of the solutions of the 
Navier-Stokes equations in two dimensions ensure the exponential dropoff 
of the spectrum of the temporal fluctuations of the turbulent velocity field. 
At the same time we found that the power spectrum is a measure and is not 
necessarily a classical function. From the practical point of view our 
considerations have led us to conclude that in this context the equality of 
time averages and ensemble averages can be obtained without invoking the 
assumption of the ergodic property for the turbulent velocity field. 
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